

Justin Charles, Justin Lam, Zhiyang Jin, Exiang Zhou, Austin Carroll

University of Massachusetts Amherst BE REVOLUTIONARY

Team 20:

Christopher V. Hollot Faculty Advisor

Justin Charles
Computer Engineer

Austin Carroll
Mechanical Engineer

Zhiyang JinElectrical Engineer

Exiang ZhouComputer Engineer

Team Roles

Justin Charles

Logistics lead:

- Sensor and
 Camera
 hardware/software
 design
- 2. Communicate with team and course coordinators

Zhiyang Jin

PCB lead:

1.Breadboard design and PCB design.

Exiang Zhou

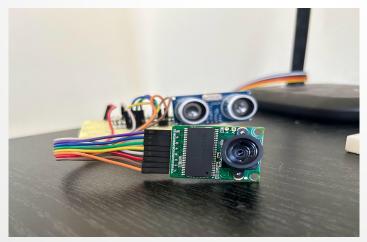
Software Lead:

- 1.WIFI
 establishment
 and data transfer
 with cameras
- 2.Mobile software design and development

Austin Carroll

Mechanical Lead:

- 1.Camera Mount
- 2.Positioning system
- 3. 3-D printing




Project Goal Review

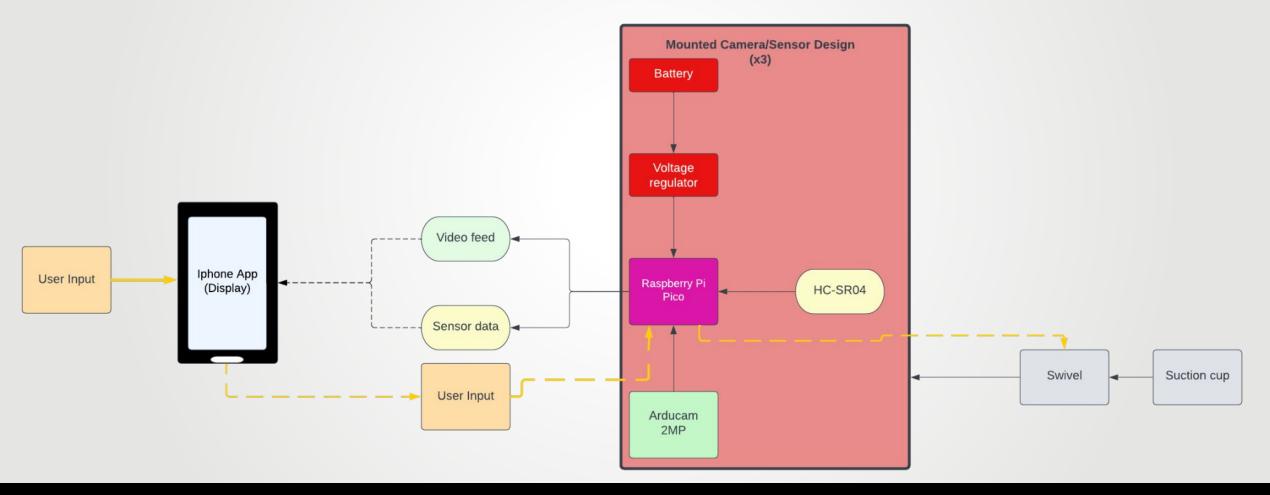
Problem: Driving is a task that many Americans undertake daily, it is a necessary function of human life today and will continue to be prevalent into the future. While this may be true, there will always be a need for added safety.

Goal: We aim to create a backup camera system that is easy and accessible to install and use, while also being convenient and adding safety for the users driving experience.

Prototype:

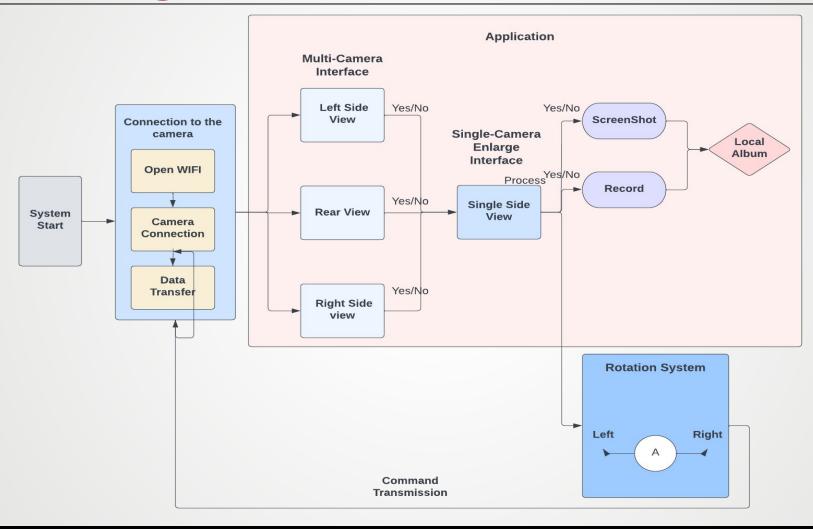
Specifications and Testing - Qualitative

System Specification	Test Plan
System will use up to 3 video systems wirelessly connected to smartphone	Inspect that up to 3 video feeds/sensors/motors will work on display
System display will show up to 3 video feeds, one feed may be chosen at a time	Inspect app to check that video feeds can be viewed and changed by user
System will provide distance and audio to the user via smartphone	Inspect app to check that distance and audio is output
Camera will have low light capabilities	Inspect video feed at night and check that objects are visible
Camera Systems will be self powered	inspect that the system will work being self powered
Camera/Sensor system will be mountable and dismountable to vehicle	Mount system on vehicle and test by driving
System will be easy to set up	Survey 10 people with setup, ask to rate on a scale of 1-10 complexity of set up. <3 should be chosen.

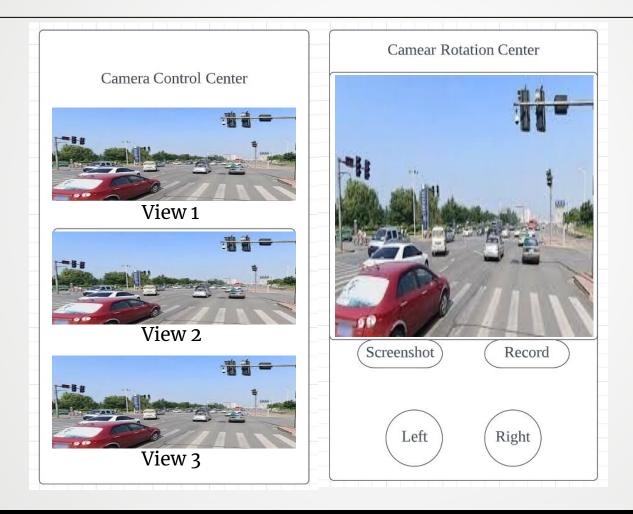


Specifications and Testing - Quantitative

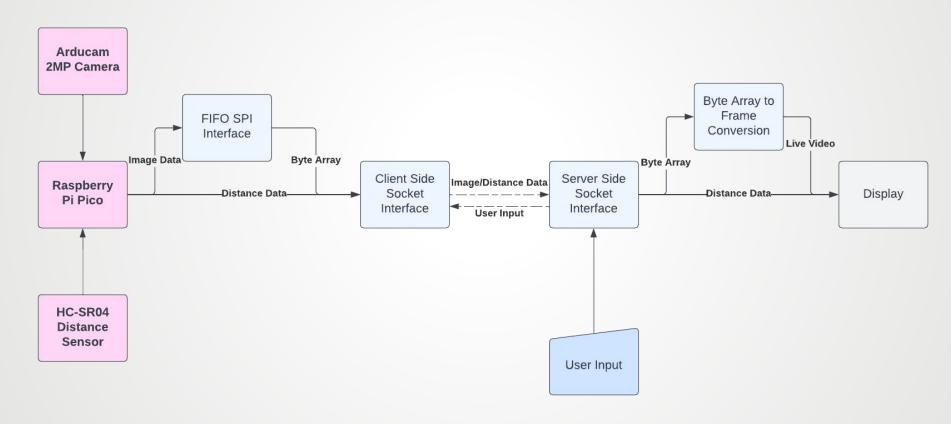
System Specification	Test Plan
System will give a slow audio alert when ≤2ft and an increasingly faster alert when ≤1ft	Get distance using sensors, manually measure distance
System cameras will rotate in intervals of 30 degrees on a horizontal axis	Measure angle change when given rotation input for cameras
Individual camera systems will hold power for a total of 8 hours	measure change in power over a day to estimate power loss
Video Feed will have a frame rate of at least 30 fps	Measure the frames per second of the camera feed after data transfer using external software
System distance Sensors can detect objects at least 10m away	Get distance using sensors, manually measure distance
System minimum resolution will be 160 x 120 pixels	Measure the resolution of the camera feed after data transfer using external software



Hardware Block Diagram



Software Diagram



Multi-cameras Interface Sketch (APP)

Block Diagram - Camera/Sensor System

https://learn.adafruit.com/ultrasonic-sonar-distance-sensors/python-circuitpython

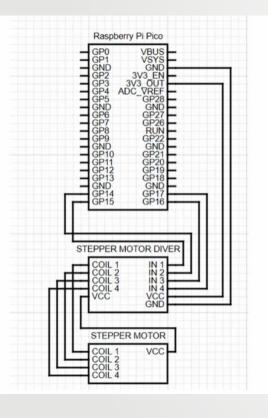
https://manuals.plus/arducam/ov2640-mini-2mp-spi-camera-on-raspberry-pi-pico-manual#axzz7mzPDUXjx

BE REVOLUTIONARY™

CDR Deliverables

CDR Deliverables

- Mounting System
 - Wireless Casing for all components
 - Casings capable of panning in 45 degree segments
- Data Transfer
 - Enables wireless real-time video transmission between cameras and external devices
 - wirelessly transfer distance data to external devices
- □ PCB
 - A working RP2040 minimal design
 - Add Wifi chip to the RP2040 minimal design
- Mobile App
 - Prototype app that receives visual feed and distance data

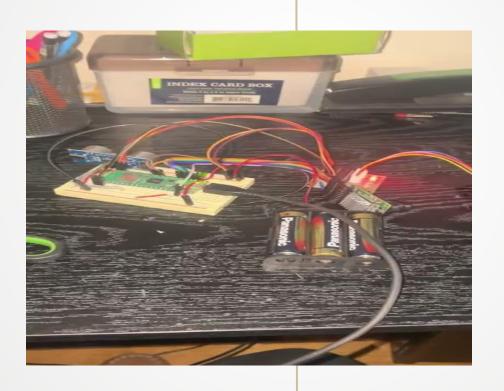

Hardware Used and Power Considerations

- Camera Subsystem: Total ~ 0.89W/Hr
 - Raspberry Pi Pico W − 5V/93mA → 0.465W
 - \circ HC-SR04 5V/15mA \rightarrow 0.075W
 - Arducam 2MP $5V/70mA \rightarrow 0.35W$
- Motor Subsystem
 - 24BJY-48 Stepper Motor 5V
 - ULN2003 Stepper Motor Driver 5V
 - Raspberry Pi Pico W 3.3 V
 - o 3 x 6V Battery Pack

Motor Subsystem

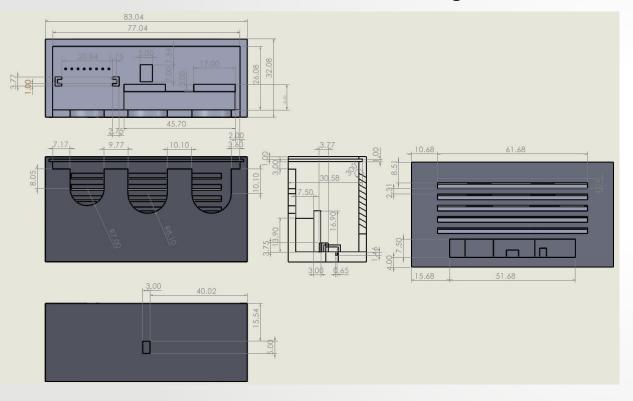
Schematic

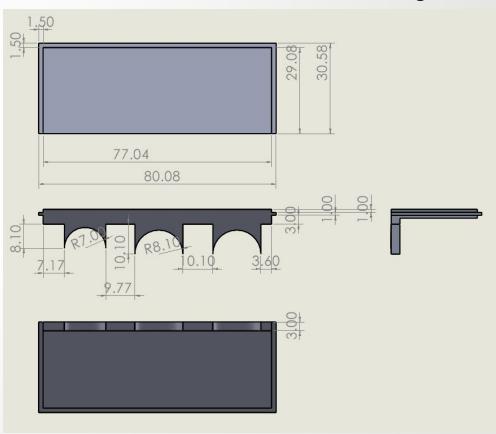

```
import time
import board
import digitalio
IN1 = digitalio.DigitalInOut(board.GP15)
IN2 = digitalio.DigitalInOut(board.GP14)
IN3 = digitalio.DigitalInOut(board.GP16)
IN4 = digitalio.DigitalInOut(board.GP17)
half_step_sequence = [
    [1, 0, 0, 0],
    [1, 1, 0, 0],
    [0, 1, 0, 0],
    [0, 1, 1, 0],
    [0, 0, 1, 0],
    [0, 0, 1, 1],
    [0, 0, 0, 1],
    [1, 0, 0, 1]
STEP DELAY = 0.002
reference angle = 0
current angle = 0
def step(direction):
    global current angle
    IN1.direction = digitalio.Direction.OUTPUT
    IN2.direction = digitalio.Direction.OUTPUT
    IN3.direction = digitalio.Direction.OUTPUT
    IN4.direction = digitalio.Direction.OUTPUT
    if direction == "clockwise":
        for step in range(170):
```


Code

```
for pin in range(2):
                    setattr(IN1, "value", half step sequence[step%8][0])
                    setattr(IN2, "value", half step sequence[step%8][1])
                    setattr(IN3, "value", half step sequence[step%8][2])
                    setattr(IN4, "value", half_step_sequence[step%8][3])
                    time.sleep(STEP_DELAY)
                current_angle += 30
                #current angle %= 360
        elif direction == "counterclockwise":
            for step in reversed(range(170)):
                for pin in range(2):
                    setattr(IN1, "value", half step sequence[step%8][0])
                    setattr(IN2, "value", half_step_sequence[step%8][1])
                    setattr(IN3, "value", half_step_sequence[step%8][2])
                    setattr(IN4, "value", half_step_sequence[step%8][3])
                    time.sleep(STEP_DELAY)
                current angle -= 30
                #current angle %= 360
56 ecount = 0
57 qcount = 0
        user input = input("Enter 'w' to return to reference angle, 'e' for clockwise or 'q' for counterclockwise: ")
        if user input == "w":
            count = ecount + gcount
            if count < 0:
                for i in range(abs(count)):
                    step("clockwise")
                for i in range(count):
                    step("counterclockwise")
            count = 0
            ecount = 0
            qcount = 0
        elif user_input == "e":
            step("clockwise")
              ecount = ecount + 1
         elif user input == "q":
              step("counterclockwise")
```

```
qcount = qcount - 1
```

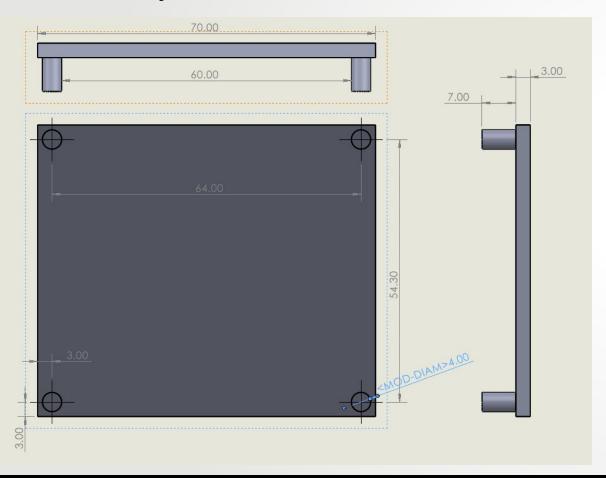


Motor Demo

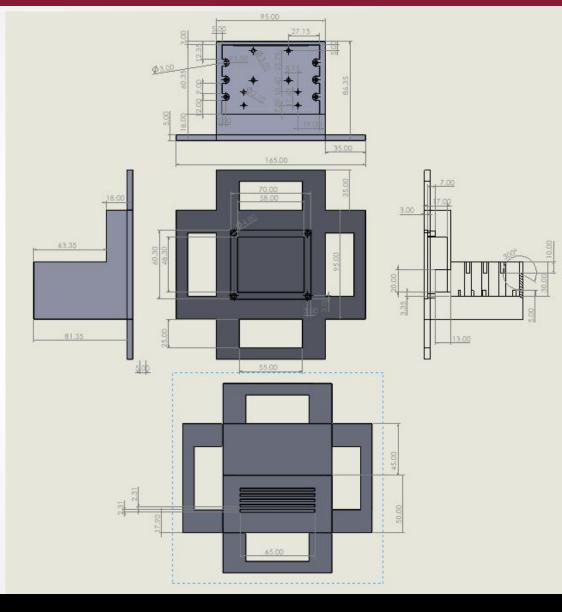


Casing Model

Camera and Distance Sensor Housing

Camera and Distance Sensor Housing Cover

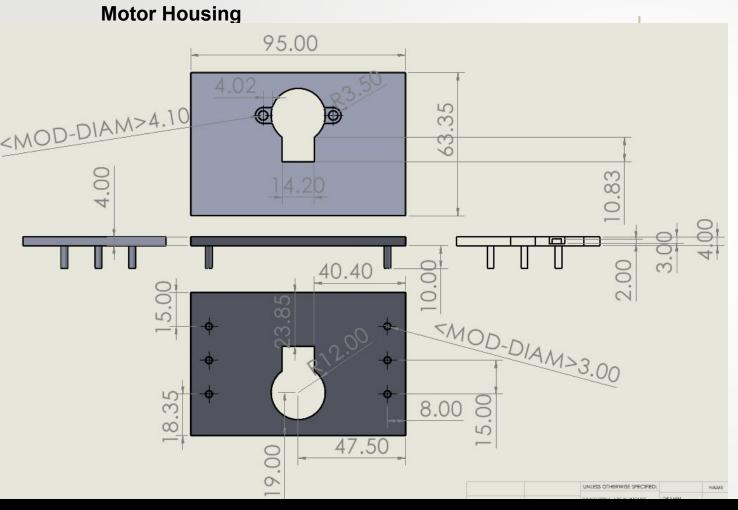


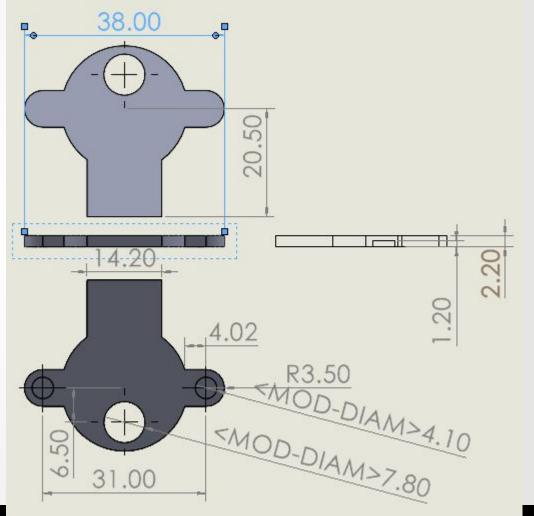


Casing Model Cont.

Battery Cover

Pico and Driver Housing





Casing Model Cont.

Motor Cover

CDR Accomplishments/Challenges - Camera/Sensor Design

Camera Subsystem Software

- Created a socket interface to communicate camera subsystem data between Pico and an external device
 - live video feed, although it is rather slow
 - distance sensor data
- This took a lot of time and effort between team members and impeded some of the work on the app development
- HC-SR04 Capabilities
 - Measuring angle: 15 degrees
 - Accurate Ranging Distance: 2 cm 400 cm

Dimensions: 80mm x 35mm Weight: ~120g

Price: \$28

Dimensions: 24.4 mm x 34.1 mm Weight: 60g Price: \$25

Wirelessly Data Transfer

Socket in Python (Server - PC/Mobile App)

```
A so import socket pf a two-way reen two network.

import numpy

number
```

Server and clients

```
HOST = "172.20.10.8"
PORT = 80
```

```
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
   s.bind((HOST, PORT))
   s.listen()
   print("Accepting connections")
   while True:
       conn, addr = s.accept()
           while True:
             data = conn.recv(30000)
             if data:
                 data2 = numpy.frombuffer((data+B'\xff'+B'\xd9'), dtype='uint8')
                 image = cv2.imdecode(data2, cv2.IMREAD_COLOR) # 图像解码
                 if image is not None and image.size > 0:
                     cv2.imshow('Live Video', image)
                 if cv2.waitKey(10) & 0xFF == ord('q'):
                     break
                 break
```


Wirelessly Data Transfer

Socketpool in C-Python (Clients - PCB/Pico W)

```
import time as utime
  import busio
  import board
   import usb cdc
  import digitalio
  #import serial
  from Arducam import *
  from board import *
  import adafruit_hcsr04
  from adafruit bus device.spi device import SPIDevice
  import wifi
   import socketpool
  import ssl
  import time
  HOST = "172.20.10.8"
  PORT = 80
21 # Connect to wifi
  print("Connecting to wifi")
  wifi.radio.connect("iPhone (3)", "88888888")
  pool = socketpool.SocketPool(wifi.radio)
  print("Creating Socket")
```

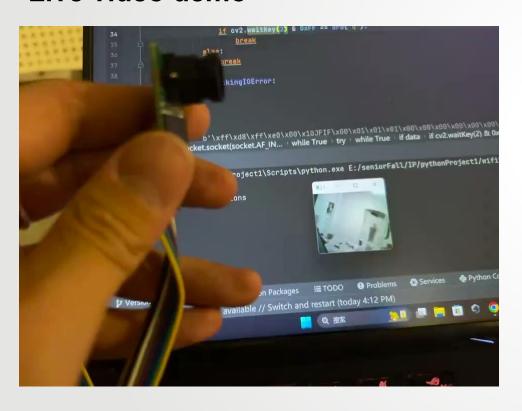
```
with pool.socket(pool.AF_INET, pool.SOCK_STREAM) as s:
52
53
            #print("Connecting")
            s.connect((HOST, PORT))
54
55
            #print("Sending")
            while True:
56
57
                mycam.spi.readinto(buffer, start=0, end=once number)
58
                usb cdc.data.write(buffer)
                sent = s.send(buffer)
59
                utime.sleep(0.00015)
60
                count+=once number
61
62
63
                if count+once number>lenght:
                    count=lenght-count
64
                    mycam.spi.readinto(buffer, start=0, end=count)
65
                    usb cdc.data.write(buffer)
66
                    mycam.SPI CS HIGH()
68
                    mycam.clear fifo flag()
69
                    break
70
```


Wireless Data Transfer - Distance/Motor Data

On the server, we wait for the user to press a key:

- D is to receive distance data
- W is to return to our reference angle
- E is to rotate

The client will person the corresponding operations the corresponding operations the clockwise

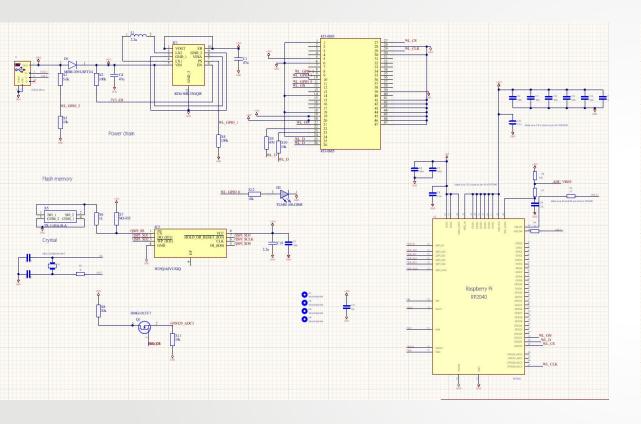

When user input is detected, we send the corresponding byte to the client, asking for data to be sent back to the server, or for a command to be run

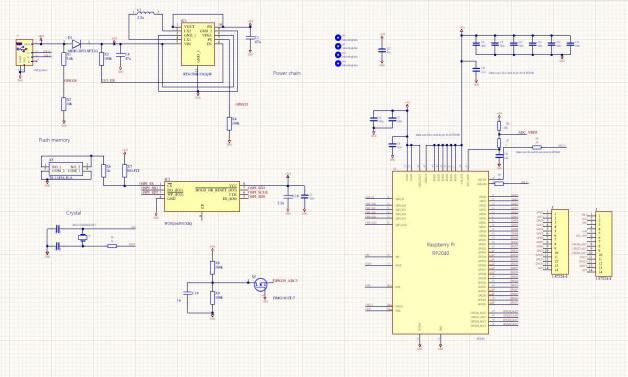
```
buff = bytearray(1)
numbytes = s.recv into(buff)
if buff == b'1':
    #print(buff)
    send = s.send(str(sonar.distance/100) + " meters")
elif buff == b'2':
    scount = ecount + gcount
    if scount < 0:
        for i in range(abs(scount)):
            step("clockwise")
        for i in range(scount):
            step("counterclockwise")
        scount = 0
        ecount = 0
        qcount = 0
elif buff == b'3':
    step("clockwise")
    ecount = ecount + 1
elif buff == b'4':
    step("counterclockwise")
    qcount = qcount - 1
```


Camera Subsystem Verification

Live video demo

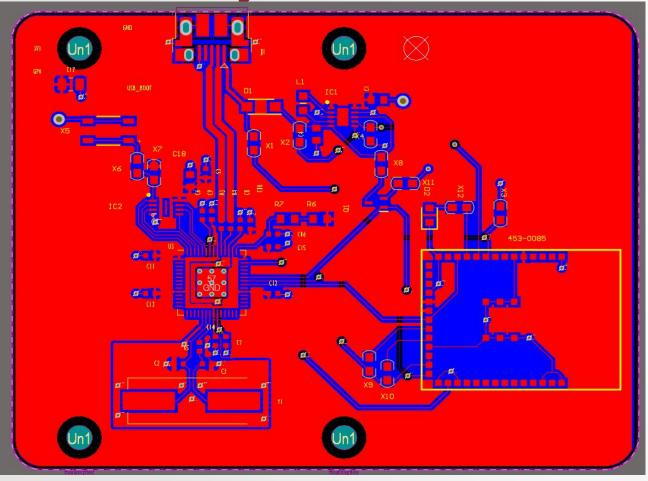
Distance sender demo


Wifi chip



ESP-01 chip

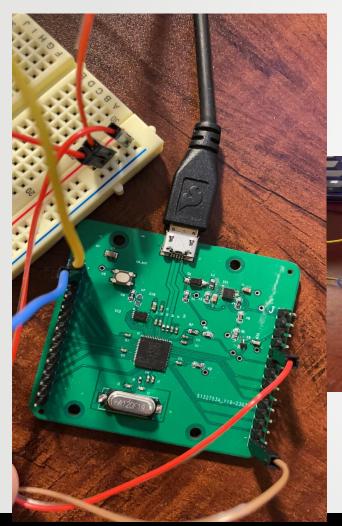
PCB Schematic



CYW43439 chip

ESP-01 chip

PCB layout



CYW43439 chip

ESP-01 chip

PCB demo


```
print("Try to connect with the WiFi..")
while (1):
    wifi_status = esp01.connectWiFi("yichong","umass151")
    if "WIFI CONNECTED" in wifi_status:
        print("The ESP8266 has successfully connected to the WiFi...")
        break
    elif "WIFI DISCONNECT" in wifi_status:
        print("ESP8266 failed to connect to the WiFi. Retrying..")
        time.sleep(5)
    else:
        print("ESP8266 is attempting to connect to the WiFi..")
        time.sleep(5)
print("\r\n\r\n")
```

FPR Deliverables—PCB

Power supply

FPR Deliverables

Mounting System

Final version of wireless housing models with built in power supplies

Mobile App

- Prototype app that receives visual feed and distance data
- Will be able to wirelessly send commands to the microcontroller via GUI
 - Rotate Camera, Take screenshot, Show Distance

Camera Subsystem

Will have three camera subsystems that work in parallel to send data to server

Gantt Chart

			W	eek	8		١	Neek	(9			Wee	ek 10)		We	ek 11	1		We	ek 12	2		We	ek 1	3		Wee	ek 14	4		Wee	k 15	j
Task	Team Member	М	T	W	Th F	F N	1 T	W	Th	F	M	T	W T	h F	М	Т	WT	h F	M	Т	W T	h F	M	T	W	Th F	M	T	W T	h F	M	TV	NT	h F
Hardware																																		
Mount and Rotation Mechanical design	Austin																																	+
Camera Casing Design	Austin																																	
PCB Design	Zhiyang																																	
			W	eek	8		١	V eek	(9			Wee	ek 10)		We	ek 11			We	ek 12	2		We	ek 1	3		Wee	ek 14	4	P.	Wee	k 1	j
Task	Team Member	М	T	W	Th f	FN	A T	W	Th	F	M	T	W T	h F	М	T	WT	h F	M	T	W T	h F	М	T	W	Th F	M	T	W T	h F	M	T V	NT	h F
Software																																		
Wireless data transfer	Justin C, Exiang																																	
Mobile Phone App Software Design	Exiang, Justin C										П	\Box													Т									

Parts List

•	Raspberry Pi Pico x3	•	\$12
•	HC-SR04 Distance Sensor x3	•	\$18
•	Arducam Day&Night Vision Camera	•	\$28
	Arducam 2MP	•	\$25
•	Ordered PCBs	•	\$35
•	24BJY48 x 3	•	\$0
•	ULN2003 Driver x3	•	\$0
•	3D Printed Parts	•	\$0

SDP Budget Used: \$151.41

Total: ~\$175

Future Parts List

- Lithium Battery
- Arducam 2MP
- Heavy Duty Straps
- Custom PCBs
- 3D Printed Parts

- \$30
- \$25
- \$10
- \$150
- · \$0

Total: \$255

Q&A

University of Massachusetts Amherst

Thank You!

Works Cited

Proximity Sensing:

- https://ascencione.com/proximity-sensor-on-a-car-automobile/#:~:text=They%20are%20mounted%20on%20all,of %20up%20to%2010%20feet
- https://mycardoeswhat.org/safety-features/parking-sensors/
- https://www.chevrolet.com/support/vehicle/driving-safety/parking/front-rear-park-assist

Back Up Camera Collision Decrease:

https://www.iihs.org/topics/bibliography/ref/2130

Arducam Research

https://www.arducam.com/

Camera Panning system

https://www.youtube.com/watch?v=hEBjbSTLytk

Background Information

https://www.rhoadsandrhoads.com/blog/avoid-an-accident-and-injuries-with-safer-towing-and-trailering/#:~:text=T
 he%20National%20Highway%20Traffic%20Safety,trailer%2C%20or%20an%20extra%20load

Similar Solutions

- https://www.amazon.com/Wireless-Waterproof-License-Monitor-Trailer/dp/B0768TW5MW
- https://bulepods.com/product/1080p-hd-mini-wireless-mini-camera-camcorder-wifi-outdoor-home-security-dvr/?gclid=Cj0KCQjw166aBhDEARIsAMEyZh6-ME4_35CjWQOa4GCF8a1MQw9MExEK2QYDPwgObFe4msGaK2f1U-YaAkMjEALw_wcB
- https://www.tadibrothers.com/products/9-monitor-with-wireless-mounted-rv-backup-camera?gclid=Cj0KCQjw166a
 BhDEARIsAMEyZh5TeRzjKDRa7v83kdlWjn4xN1IDf_P8eycc5BjxjW0tsCPysb3zWzAaArC_EALw_wcB
- https://www.walmart.com/ip/WiFi-HD-Wireless-Car-Rear-View-Cam-Wireless-Backup-Camera-Waterproof-Camera
 a-for-Cars-Trucks-Vans-Pickups-SUVs-WiFi-Backup/769954848?wmlspartner=wlpa&selectedSellerId=18988

Works Cited

Arducam 2MP setup:

https://manuals.plus/arducam/ov2640-mini-2mp-spi-camera-on-raspberry-pi-pico-manual#axzz7mzPDUXjx

Distance Sensor setup:

• https://learn.adafruit.com/ultrasonic-sonar-distance-sensors/python-circuitpython

Thonny Pico Setup

 https://www.tomshardware.com/how-to/raspberry-pi-pico-setup#:~:text=Connect%20the%20Raspberry%20Pi%20 Pico.Click%20Ok%20to%20close.

Raspberry Pi Pico hardware example:

Raspberry Pi Documentation - Raspberry Pi Pico and Pico W